Search results

1 – 3 of 3
Article
Publication date: 5 February 2018

Stefano Cordiner, Alessandro Manni, Vincenzo Mulone and Vittorio Rocco

Thermochemical conversion processes are one of the possible solutions for the flexible production of electric and thermal power from biomass. The pyrolysis degradation process…

Abstract

Purpose

Thermochemical conversion processes are one of the possible solutions for the flexible production of electric and thermal power from biomass. The pyrolysis degradation process presents, among the others, the interesting features of biofuels and high energy density bio-oil production potential high conversion rate. In this paper, numerical results of a slow batch and continuous fast pyrolyzers, are presented, aiming at validating both a tridimensional computational fluid dynamics-discrete element method (CFD–DEM) and a monodimensional distributed activation energy model (DAEM) represents with data collected in dedicated experiments. The purpose of this paper is then to provide reliable models for industrial scale-up and direct design purposes.

Design/methodology/approach

The slow pyrolysis experimental system, a batch of small-scale constant-pressure bomb for allothermic conversion processes, is presented. A DEM numerical model has been implemented by means of a modified OpenFOAM solver. The fast pyrolysis experimental system and a lab scale screw reactor designed for biomass fast pyrolysis conversion are also presented along with a 1D numerical model to represent its operation. The model which is developed for continuous stationary feeding conditions and based on a four-parallel reaction chemical framework is presented in detail.

Findings

The slow pyrolysis numerical results are compared with experimental data in terms of both gaseous species production and reduction of the bed height showing good predictive capabilities. Fast pyrolysis numerical results have been compared to the experimental data obtained from the fast pyrolysis process of spruce wood pellet. The comparison shows that the chemical reaction modeling based on a Gaussian DAEM is capable of giving results in very good agreement with the bio-oil yield evaluated experimentally.

Originality/value

As general results of the proposed activities, a mixed experimental and numerical approach has demonstrated a very good potential in developing design tools for pyrolysis development.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Stefano Cordiner, Alessandro Manni, Vincenzo Mulone and Vittorio Rocco

In the recent years the interest toward the use of biomass as a fuel for energy conversion, along with the continuous tightening of regulations, has driven the improvement of…

Abstract

Purpose

In the recent years the interest toward the use of biomass as a fuel for energy conversion, along with the continuous tightening of regulations, has driven the improvement of accurate design techniques which are required to optimize the combustion process and simultaneously control pollutant emissions. In this paper the use of a 3D Computational Fluid Dynamics approach is analyzed to that aim by means of an application to an existing 50 MW biomass fixed-bed combustion furnace fueled by grape marc. The paper aims to discuss these issues.

Design/methodology/approach

The studied furnace is an interesting example of biomass utilization as it may integrate biomass with organic residual by an industrial process. The numerical model has been implemented into an OpenFOAM solver, with an Eulerian-Lagrangian approach. In particular, the fully 3D approach here presented, directly solves for the gas and solid evolution in both the combustion bed and the freeboard. Special care has also been devoted to the treatment of radiating fluxes, having a remarkable influence, again, on the bed evolution.

Findings

Results have been compared to experimental data in terms of temperature showing a good agreement. Further comparisons have been done with literature available data for a similar power size biomass furnace showing reasonable similarities.

Originality/value

Emission formation processes in a biomass furnace are dealt with in this paper. The innovation lies in the use of a fully 3D numerical approach, that is validated with regard to temperature measurements gathered in a multi-MW experimental furnace.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 3 of 3